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A Direct Method for h e 1  Optimal Maneuvers of Distributed Spacecraft 
in Multiple Flight Regimes 

Steven P. Hughes' 

D. S. Cooley2 

Jose J. Guzman3 

We present a method to solve the impulsive minimum fuel maneuver 
problem for a distributed set of spacecraft. We develop the method 
assuming a non-linear dynamics model and parameterize the prob- 
lem to allow the method t o  be applicable to multiple flight regimes 
including low-Earth orbits, highly-elliptic orbits (HEO), Lagrange 
point orbits, and interplanetary trajectories. Furthermore, the ap- 
proach is not iimited by the inter-spacecraft separation distances and 
is applicable to both small formations as well as large constellations. 
Semianalytical derivatives are derived for the changes in the total AV 
with respect to changes in the independent variables. We also apply 
a set of constraints to ensure that the fuel expenditure is equalized 
over the spacecraft in formation. We conclude with several exam- 
ples and present optimal maneuver sequences for both a H E 0  and 
libration point formation. 

Introduction 

In this paper, we present a direct approach to solve the impulsive, minimum fuel ma- 
neuver problem for a distributed set of spacecraft. To equalize the fuel expenditure among 
spacecraft, we enforce a set of nonlinear constraints. We present an explanation of the 
method and the mathematical theory assuming a general, nonlinear dynamics model that 
can be expressed in an inertial or rotating coordinate system depending on the problem 
being solved. This ensures the method is applicable to a wide range of spaceflight regimes. 
Fk-thermore, since a nonlinear dj-uamics mode! is used. the method is not !kited to smd! 
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inter-spacecraft separations and is equally applicable to large constellations and close for- 
mations. 

Trajectory optimization has a rich history and there are many techniques that have been 
developed over the last fifty years. Most techniques can be classified as either direct or in- 
direct. Betts’ presents an excellent survey of trajectory optimization techniques. Guzman2 
et .  al. present a survey of indirect methods. The approach developed here is a direct method 
and is an extension of techniques that have their origins in research performed during the 
Apollo era3i4 and later extended by D’Amario5 et.  al., and H ~ w e l l ~ > ~  et. al. Their are sev- 
eral new contributions contained in this work. First, the method is generalized to permit 
minimum fuel optimization for a maneuver sequence involving a set of m spacecraft. We 
have also generalized the method to find the optimal the launch vehicle injection orbit to 
minimize fuel during the initial spacecraft deployment phase. Finally, we have reformulated 
the cost function to remove a naturally occurring singularity in the gradient, without loss 
of generality. 

We begin this paper with a mathematical problem statement defiiiirig the cost and 
constraint functions. The cost function is the sum of the total 4 V  of all spacecraft over 
an entire maneuver sequence. The parameterization of the problem is discussed for two 
types of maneuver sequences: initialization and reconfiguration. Next, we discuss how to 
evaluate the cost and constraints. The approach requires solving a number of Initial Value 
Problems (IVP) and Two Point Boundary Value Problems (TPBVP). However, given the 
speed of modern computers, the method is surprisingly fast. Next, the gradient of the cost 
function and the Jacobian of the constraints are derived. We discuss numerical issues in 
implementing this approach. We conclude the paper with several test problems in diffcrcnt 
flight regimes to demonstrate the applicability of the method. 

Problem Statement and Parameterization 

There are numerous ways to pose the minimum fuel formation maneuver problem. We 
assume that the desired relative motion is driven by mission requirements and has been 
determined a-priori. The goal is to develop a technique to achieve the desired relative mo- 
tion in a minimum fuel manner. We define the minimum fuel problem for a formation of m 
spacecraft, where the trajectory of the kth spacecraft has n k  total maneuvers, as 

where rOk,  vOk, and to, are the initial position, velocity, and epoch of the kth spacecraft 
respectively. rfk and vfk are the final position and velocity respectively of the Ic th  spacecraft 
at a reference epoch tfk 

Sclve: 
min ( J )  

where 

k = l  

where m is the number of spacecraft and avk is the total weighted 4 V  expended by the 
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kth spacecraft and is calculated using 

3=1 

where AvJk is the j th  maneuver on the kth trajectory. The scalas function fs(Avjk) in Eq. (3) 
is included to remove a singularity in the derivative of J for small Avjk. This function will 
be discussed in detail in a later section. For now it suffices to  say that fs(A2Jjk) = 1 for 
values of Ayk large enough not to cause numerical problems. When appropriate, we impose 
the following set of constraints to equalize the AV among the spacecraft. 

where toll is the desired tolerance for constraint one and SO on. 

We assume a dynamics model given by the second order differential equation 

i: = f(r, i: t )  (8) 

The formulation of the cost and constraints, and their derivatives, is performed for the 
general nonlinear dynamics model seen in Eq. (8). We discuss the specific dynamics model 
used for software implementation and validation in a later section. 

At the heart of solving an optimization problem is the problem parameterization. In 
general, the cost function J shown in Eq. (2) is a scalar function of vectors that we can 
writ‘e as 

m 

where X is the vector of independent variables being manipulated by an optimization rou- 
tine, and C is a vector of constants associated with the problem. The constraints in Eqs. (4) 
- (7) can be written as 

G = diag (ZAVAVTZT) = G(X, C) 5 TOL (10) 

where AV = [A& A& ... AV,-l AV,IT, Z is constant matrix discussed in a later sec- 
tion, and TOL is a vector of tolerances associated with the constraints. Before attempting 
to solve the problem we must choose which variables and degrees of freedom associated 
with the problen are to be included in X, which .;;ill be varied by a mmerical optimization 
routine, and which degrees of freedom are to be included in C and treated as constants. 
The choice of X and C will influence the convergence properties of the numerical routine 
and determine the types of problems the method can solve. 

In the remainder of this section, we discuss two parameterizations to solve the impulsive 
minimum fuel maneuver problem for distributed spacecraft. For convenience, we categorize 
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the types of maneuver sequences as initialization sequences or maintenaace/reconfiguratioii 
sequences. In an initialization sequence, all spacecraft begin at a common time and location 
on the same orbit. An initialization sequence is performed to take each member spacecraft 
from the common parking orbit to its desired final location defined by a final orbit and time. 
In a maintenance maneuver sequence, the spacecraft are not initially located on the same 
orbit and hence are not collocated before the maneuvers are performed. The fuel optimal 
maintenance sequence is a more general problem and we begin by discussing the approach 
taken here. 

Maintenance and Reconfiguration Sequence 

An illustration of a formation reconfiguration sequence is shown in Figure 1 .  For sim- 
plicity the diagram only illustrates a two-spacecraft sequence. Before the beginning of the 
maneuver sequence, each spacecraft is located on a unique orbit. We define the initial orbit 
for the kth spacecraft, P O k ,  as the locus of points that are the solutions to the initial value 
problem 

for varying values of t l k ,  the time at which the kth spacecraft performs its first maneuver. 
Recall that rok and V o k  are the position and velocity respectively, of the kth spacecraft at 
some reference epoch t o k .  Throughout the paper we use fl to denote the position portion of 
the solution to the Initial Value Problem (IVP) of the differential equation shown in Eq. (8). 
The initial conditions to the IVP shown in Eq. ( 1 1 )  are contained in square brackets. The 
initial time is the second argument and the final time is the first argument. 

r l k  = $ T ( t l k ,  t o k ,  [ r o k ,  v o k ] )  (11) 

The goal of the reconfiguration sequence is to depart from the trajectories defined by 
P o k ,  and move each spacecraft to a new location on p f k  which is defined as the locus of 
points that are the solution to the initial value problem 

for varying values of tn&, where n k  is the number of maneuvers on the kth trajectory, and 
r f k  and V f k  are the desired final position and velocity respectively, of the kth spacecraft 
at some reference final epoch t f k .  According to this definition, t n k k  is the time of the last 
maneuver of the kth spacecraft. 

Between the initial and final maneuvers, the kth spacecraft can perform intermediate 
maneuvers at locations r j k  given by 

2 5  j 5 n k - 1  

r j k  { 15 k i m  

Note that the reason 2 5 j 5 Tlk - 1 is because r l k  and r n k k  are determined from the initial 
value problems shown in Eq. ( 1 1 )  and ( 1 2 ) .  Because we allow the time of the first and last 
maneuver for each spacecraft to vary, as well as the times of the interior maneuvers, we see 
that t i k ,  the maneuver times, are given by 

15 i I n k  

15 k < m  
t i k  { 
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Figure 1 Formation Maintenance and Reconfiguration Illustration 

There may be numerical difficulties if t r k  is not ordered such that t 2 k  > t l k .  This is discussed 
in a later section. 

From Eqs. (11-14) we see that the variables that define the maneuver sequence are: t l k ,  

t o k ,  rok ,  Vok, t f k ;  f j k ,  V f k ,  T J k ,  and t t k .  We can now parameterize the problem by choosing 
which variables to include in X and which to include in C .  For the general minimum fuel 
reconfiguration problem we choose to include as  independent variables the time of the first 
maneuver of the kth spacecraft, t l k ,  the times of the interior maneuvers, t , k .  and the times 
of the final maneuvers, t n & .  We also include the locations of the interior maneuvers, f l k r  

as independent variables. We treat the state components t o k .  f o k .  and V o k  that define the 
initial orbit, and the state components t j k ,  r f k .  and V f k  that define the find orbits, a s  
constants. In summary, for the maintenance and reconfiguration problem we can write 

The parameterization of the reconfiguration problem shown in Eqs. (15) and (16) is 
chosen such that the boundary conditions at I l k  and r n k k  are satisfied implicitly. The 
optimizer is not tasked with satisfying another set of complicated non-linear constraints to 
satisfy the boundary conditions along the initial and final orbits Po, and pfk respectively. 
The down-side to this approach is that for each cost function evaluation we must solve a 
number of initial value problems (IVP) and two point boundary value problems (TPBVP). 
Solution of the TPBVPs is discussed in a later section. In the next section we discuss the 
parameterization of the initialization sequence. 
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Figure 2 Formation Initialization Illustration 

Initialization Sequence 

The second type of maneuver sequence we address is an initialization sequence. In an 
initialization sequence, all spacecraft initially lie on a common orbit defined by the locus of 
points Po, as shown in Figure 2. Hence, for the initialization sequence we have 

We refer t o  P, as the injection orbit and it may or may not be known a-priori. For large 
formations that may require significant fuel expenditure from all spacecraft in formation 
to achieve the desired relative geometry, it may be desirable to include the injection orbit 
itself as an independent variable. In this case, the solution to the optimization problem 
yields the minimum fuel initialization trajectory for each spacecraft as well as the optimal 
launch vehicle injection orbit. Referring to Figure 2, we see that although all spacecraft 
initially lie on Po, it is not required that all spacecraft perform their first maneuver in the 
initialization sequence at the same epoch and hence the spacecraft can depart from Po at 
difFereiii loc~~ttions. The location of thc first maneuver fcr the kth spacecrdt is determined 
by the epoch of its first maneuver t l k ,  and the state vector that defines Po. We assume that 
Po is unique trajectory defined by the locus of points that is the solution to the following 
IVP for varying values of t l k :  

where t o ,  ro, and v,, are the launch vehicle injection conditions, and til, is the time of the 
Erst maneuver of thc kth spacecraft. There is a unique final t,raject,ory for t,he kth sps.cecraft 
defined by the locus of points, T f k ,  which is the solution to the following IVP for varying 
values of t n k k :  

We assume the values t f k ,  r f k ,  and V f k  have been determined a-priori to maximize the 
mission return. Hence these values are constants for the initialization problem. 

rnkk =Z # ( t n k k , t f k ,  [ r f k r V f k ] )  (19) 
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For complete generality. we assume that the epoch of the initial maneuver for each 
spacecraft and the epoch of the final maneuver to insert the spacecraft into its location 
in formation can freely vary. Note that the initial epoch of the first maneuver of the kth 
spacecraft, t l k  is not the same as t,. The epoch to is part of the state vector that uniquely 
determines the injection orbit, while t l k  is the epoch when the kth spacecraft departs from 
the injection orbit. We also assume that the times and locations of the interior maneuvers 
for dl spacecraft 
follows: 

can freely vary. For the initialization problem we define X and C &S 

2 1  j <nk-1 

15 k Irn 
15 i I n k  (20) 

(21 1 
T T  { T T  x = [ t, ro v, t i k  rjk ] 

c = [ tfk rFk v& I' 
The parameterization of the cost and constraint functions in an optimization problem 

greatly influence the convergence properties of the method. In this section. we discussed 
a parameterization of the minimum fuel maneuver problem for two types of maneuver se- 
quences for a set of distributed spacecraft. Given the problem parameterizations developed 
in this section, we are ready to look into the details of evaluating the cost and constraint 
functions. 

Cost and Constraint Function Evaluation 

In this section we take the problem paranieterization given by X and C in the last 
section and discuss how to calculate the cost J(X, C> and the constraints G(X,  C ) .  Calcu- 
lating the cost and constraints is similar for both the initialization and the recoderat ion 
problem and so we address them simultaneously. The first step is to redimensionalize the 
vector of independent variables X. Once we have a dimensionalized set of variables given by 
X and C ,  we solve a set of I\% to obtain the position vectors that define the locations of 
the first and last maneuvers of each spacecraft. The next step is to solve a set of TPBVPs 
that yieid A T J ~ ~ .  Finally, we solve for the cost and constraints using Eqs. ( 2 ) ,  (3) and (32 ) .  
Each step is discussed in more detail below. 

Step 1: Redimensionalize X 

It is often necessary to work with nondimensional variables when solving optimization 
problems using numerical methods. We begin by assuming that the numerical optimiza- 
tion process uses non-dimensional variables where the transforma.tion from dimensional to 
noudimensional variables is given by 

X' = diag(Xf)-' x - x, ( 2 2 )  

where X' is the nondimensional form of X ,  diag(Xf) is a matrix with Xf on the diagonal 
and zeros for the off-diagonal terms, and Xf and X, are vectors of the same length as X. 
We assume t.hat diag(Xf)-' exists.. The inverse t.ransformation is simply 

X = diag(Xf)(X' + X,) (23) 
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It is more convenient to work in dimensional variables to evaluate the cost and constraints 
and the redimensionalization is performed before step 2 is performed. X f  and X, are chosen 
according to the numerical issues associated with the particular problem being solved. 

Step 2: Solve lVPs 

To evaluate the cost and constraints, we need to be able to calculate 

where a superscript "-" denotes a condition immediately before an impulse maneuver, and 
a superscript "+" denotes a condition immediately after an impulsive maneuver. The 
quantities vTk and v : ~ ~  are determined by solving the following initial value problems 

(25 1 - 
V l k  = v ( t l k , t o k ,  [ r o k , V o k ] )  

v+ nkk = @ ' ( t n k k , t f k ,  [ r f k , v f k  I )  (26) 

where fl denotes the velocity portion of the solution to the IVP, and t f k ;  r f k ,  and V f k  are 
contained in C and treated as constants. If we are solving a maintenance problem, t o k ,  r o k ,  

and v o k  are also contained in C. However, if we are solving an initialization problem then 
the initial boundary conditions may be contained in X. To solve the TPBVPs found in the 
next step we will need r l k  and r n , k .  However, these are simply the position portions of the 
solution to the IVPs in Eq. (25) and (26). 

Step 3: Solve TPBVPs 

The remaining components of the impulsive maneuver vectors needed to calculate Eqs. (24) 
are determined by solving a set of TPBVPs. From Step 2 we found r l k  and r n k k ,  and the 
variables r i k  and t j k  are contained in X. Therefore, we know the positions and times for all 
maneuvers and we have N Lambert's problems to solve where N is given by 

m 

N = x ( n k  - i j  (27) 
k=l  

There are numerous well-known approaches to solving Lambert's problem. We use a simple 
multiple shooting method outlined below. The algorithm is described as follows where we 
drop the subscript k, for now, to simplify the notation. Given an initial position r j  and an 
initial velocity v j ,  both at time t j ,  find b v j  applied at time t j  so that we achieve r j + l  at 
t j + l .  Figure 3 illustrates the problem. The dark black arc denotes the path a spacecraft 
would follow if no b v j  were applied. For this arc, the final position denoted by ra is not 
equal to the desired final position r j + 1 .  Hence, for the dark black are, d r j + l  # 0. The 
dashed arc denotes the trajectory that is the solution to Lambert's problem. For this arc 
rJ+l = r , ,  or d r j + l  = 0. To solve for 6 v j  such that 6rj+l = 0 first definc xj as 
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Figure 3 Illustration of One Trajectory Arc 

then bx,+l is given by 

where t3+1 and t3 are fixed. We can write 9 (t,+l, t3) as 

bx,+1 = 9 ($+I. t,) bx, 

We can solve for dv, such that brj+l is zero by iterating on Eq. (31) until (r3+1 - r,) meets 
a user defined tolerance. 

AV, = , ( q t l  - r,) (31) 

Upon convergence. for each trajectory arc we save v,' , v3-. and 9 for use in calculating the 
cost. constraints, and their derivatives. It is important to note that this approach assumes 
that B;,ll,3 exists. Tie address cases when this is not true in a later section. Using the above 
algorithm, we solve all ili' Lambert's problems. Knowing the solution to each trajectory arc 
permits the calculation of all maneuvers Au3k and with this information we can evaluate J 
and G. 

Step 4: Solve for J and G 

From the previous steps we know v$ and 4jk. We use Eqs. (24) to calculate Av,k. Next 
we can evaluate fs(Avjk) using Eqs. (41)-(43). J can be calculated using Eqs. (2) and (3). 

The constraints in EQs. (7) are more conveniently written for mathematical manipulation 
as 

G = diag (ZAVAVTZT) 5 TOL 

where TOL is a vector of tolerances, AV is given by 

AV = [A& AV2 ... AV,lT (33) 
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and Z is given by 

Z =  

-1 1 0 0 . . .  0 
0 -1 1 0 . . .  0 
0 0 -1 1 . . .  0 

0 . . .  -1 1 0 0 
0 . . .  0 -1 1 0 
0 . . .  0 0 -1 1 
1 0 0 . . .  0 -1 

The above equations allow us to calculate J(X, C), and G(X, C). To take full advantage 
of the power of a numerical optimization routine, it is also useful to  calculate the gradient 
of J and the Jacobian of G. We devote the next section to this topic. 

Cost and Constraint Derivatives 

Gradient-based numerical optimization routines such as Sequential Quadratic Program- 
ming (SQP) perform best when supplied with analytic derivatives of the cost and con- 
straints. Providing derivatives is often nontrivial, yet it is advantageous because it increases 
the speed of convergence by requiring fewer function calls and avoids numerical problems 
associated with finite differcncing. 

Below we derive the gradient of the cost function and the Jacobian of the constraint 
functions. We need the derivatives of the cost and constraint functions with respect to 
the independent variables shown in Eqs. (15) and (20). Specifically, we require analytic 
exmessions for 

and 
k = l  

dG 
dX 

where IL' is a generic iiidepeiideiit variable and 

dX a x  d x  ... ""-IT dX 
In Eqs. (34)-(36) we see terms of the form d A v k / d x  which can be written 

d nk "" = - fs(Avjk)Av,, 
d z  d z  

,=1 

One can show that Eq. (37) can be written as 

(35) 

(36) 

(37) 
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By inspecting Eq. (38). we see that vie must determine dAv$/dx. This term is non- 
trivial and in the next few subsections we derive this term for the specific independent 
variables used in this work. The term fs(A?IJk)/Av,k can cause difficulty for small 4 V j k .  

Tkaditionally, to determine the total AV, we would set fs = 1 and we have the new 
relationship 

nt 

However, if fs = 1 then we have the following t,erm that appears in the derivative of AV;: 

This term is obviously singular for small AS73k. The difficulty this causes is significant 
because the optimization process tends to make 4 ' U j k  a s  small as possible and sometimes 
Av3k can approach zero. lye can mitigate problems caused by small values of AZ'Jk by 
carefully choosing fs(Av,k). 

By inspecting the term fs(Aulk)/Av,k. we see that we need f s ( A u 3 k )  to approach zero 
as fast or faster than Aujk so that the limit as AvJk -+ 0 is defined. There are many possible 
choices for such a function. We have chosen to partition the function fs(Av,k) into three 
regions. For small d u e s  of AvJk, where Av3k < AVL we define fs(AVjk) as 

fs(Az+) = Atl,k 2 ( 4 t 3 k  < Aut) (41) 

For intermediate values of Av,k, where ~ V L  < Avjk < 42". we define fs(Az:,k) as 

fs(Atjk) = aAU;k + bAz$ + d v f k  + dAv,k (AVL < Au < 4 2 1 ~ )  (42) 

For large values of AV,~.  where AVH < AVjJk, we define fs(Az;k) as 

fs(Aujk) = 1 (AVH < AGjk) (43) 

The values of AVL and 4 V H  in the above equations are chosen depending upon the numerics 
of the particular problem being solved. However, AVL must always be less than AVH. 

The form of fs described above removes the singularity in the derivative of fs(Al-jk) for 
small values of Avjk. As Avjk + 0 we see that where Avjk < AVL 

and xe  have a non-singular function for d l  values of AU,k. The four constants in the quartic 
function in Eq. (42) are chosen so that fs(Av3k) and its first derivative are continuous. The 
derivation of the constants a, b, c. and d is shown in Appendix 1 and the expressions are 
found in Eqs. (114-117). 

The second term in Eq. (38) that is non-trivial is 

dX 
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where n: is a dummy variable that represents an arbitrary component of X given in Eqs. (15) 
and (20). First let’s identify some derivatives that are zero after looking at  the physics of 
the problem. From inspection of Figure (1) and (2) we see that 

and 

dAVT 

aren 
> = O  if n f k  

dAvT 
3 k = O  if n # k  

dti, (47) 

where n is dummy index used to denote the trajectory number. Eqs. (46) and (47) come 
from the fact that changing the time or position of a maneuver on one trajectory does not 
affect the AV along another trajectory. For this reason we can drop the subscripts n and 
k without loss of generality. Hence the remaining derivatives to be calculated are 

dAvT dhv: 
dre ’ dti  

where the second subscript on each variable is assumed to be I C .  For convenience, we break 
down the derivatives shown above into three categories and devote a subsection to each. 
The first category contains initial boundary derivatives which are derivatives with respect 
to to, r,, v,, and t l .  The second category contains derivatives that are with respect to 
internal maneuver times and locations, te (te E t i)  and re respectively where 2 5 4 5 nk - 1. 
The third cakgory contains derivatives with respect to the final time, tnk .  The next three 
subsections discuss the three t,ypes of derivatives in detail. 

~- 

Initial Boundary Derivatives 

We define the initial boundary derivatives to be those with respect to t l ,  to ,  ro: and v,. 
By inspection of Figure (1) we can see that 

This is due to the fact that changing ro does not change Av3. Likewise changing time to 
does not change Av3. Therefore the nonzero initial boundary derivatives are 

dAvT dAvT dAvT dAvT dAvT dAvT dAvT dAvT 
atl atl , at, 1 at, dr, dr, ’ dvo ’ dv, 
- ___ - - ___ - __ - 

Let’s begin by looking at the derivatives with respect to t l .  Assume we have the TPBVP 
illustrated in Figure 4 and tlcfined by 

Given: to ,  r,, v,, t l ,  t2, r2 

Find: v t  such that r Itz = 1-2 
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Figure 4 Illustrat,ion of Initial Boundary 

If-e know the solution has the following form 

v: = 4' (tl,tz, [n,~;]) (50) 

The symbol 0 denotes the solution to the initial value problem with initial conditions 
contained in square brackets. The second time argument is the initial time and the first 
time argument is the final time. So, in EQ. (49), r2 and vi axe the initial conditions with 
an initial time of t2 and a h a l  time of tl. Hence, in this case we are back-propagating 
because t2 > tl. The superscript T and e denote the position and velocity portions of the 
initial value problem respectively. By inspection of Figure 4; we see that changing tl will 
result in a change in rl. v;: vi , and v;. Taking the derivative of rl and v: with respect 
to  tl yields 

I 

(51) drl  - a# a ~ $ ~ l ? ~ ;  +--- at, at1 av at, 

where V is a dummy variable to denote diflerentiation with respect to vehity.  
equations ca,n be rewritten as 

These 

% -- av' - a: + Dt,,t, at, 
a1 

(54) 

Solving the system of equations, and using Eqs. (118) and (119) from -4ppendix 2, we obtain 

(55) 
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By inspection, we see that 

The derivatives with respect to ro and v, can be derived by starting with a solution of 
the form 

1-2 = @' (t2,ti, [ri,~:]) (59) 0 

where we note that changes in r, or v, result in changes in r l ,  v;, v:, and v:. Taking 
derivatives of Eqs. (59) and (60) with respect to  r, yields 

+-- dr, dR dr, dV dr, 

(621 
dv, - 8~ ar, 84" av: +-- dr, dR dr, dV ar, 

where R is dummy variable to denote diffcrentiation with respect to position. These equa- 
tions can be rewritten as 

Finally, solving for the desired derivatives yields 

+ 5 = -B& At,,t, At, ,to 
dr0 

Taking derivatives of Eqs. (59) and (60) with respect to vo yields 

av, - 84' arl d v  av; 
dv, d R  av, av av, +-- 

These equations can be rewritten as 
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I * .  

. solving for the desired quantities yields 

5 = (Ct,,t, - Dt2.t,B&4t*:t1) Bt,,t, (72) 
avo 

Finally. the last two nonzero derivatives with respect to ro and v, can be written simply a s  

The last initial boundary derivatives to be determined are the derivatives with respect 
to to. The derivatives of rl and v l  with respect to to can be found by starting with a 
solution of the form 

To = 4r ( t O , t l ,  [r1,vJ) (75) 

vo = 4” ( t O , t l ,  fr1,v;l) (76) 

where we note that changes in to result in changes in rl, v;, v:, and v;. Taking the 
derivative of Eqs. (73) and (76)  with respect to to yields 

These equations simplify to 

sol\:ing for the desired derivatives yields 

(77) 

(78) 

(79) 
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Recall that changing to  changes r l ,  v;, vF7 and v z .  We can find the expressions for 
&?/at, and av,/at, starting with solutions of the form 

vf = @'(tl,t2: [Q7V;]) (83) 

- 
v2 = @'(t27t17 [ r l>vr ] )  

Taking the derivative with respect to t o  yields 

av+ dqYdr2 a@'av; +-- -- 1 --__ 
at, aR at, av at, 

drl  a4u av; -- a v i  - -- + -__ 
at, aR at, av at, 

This can be rewritten as the system of equations below 

(84) 

Solving the system of equations for the desired quantities yields 

(90) 
a -  -- v2 - -(I - Dt,,t,Dtl,t,)-lCt,,tl (At,,t,vo + Btl,t,ao) 
at, 

Note that Eqs. (89) and (90) contain an element of the inverse of the state transition matrix. 
See Appendix 2 for a discussion of how this can be calculated without inverting the entire 
6 by 6 state transition matrix. 

We have completed the derivation of the initial boundary derivatives and they are sum- 
marized in Tables 1 - 3. Now we move on to the internal derivatives. 
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Table 3 Initial Boundary Derivatil-es with respect to r, and v, 
Term &* h 0  

hi- Ct1,to a, ,to 

w -Btz:,Atz,tlAtl.to -B&4t2,t1Bt1.to 

a q  (Ct,,t, - Dtz.t1B&4t2.t,) &,.to (C,,,t, - Dt2rtlB;;*1At2.ti) Bt,& 

Internal Derivatives 

The internal derivatives are defined as derivatives of AvT with respect to the internal 
maneuver times and positions, or: 

and 

By inspection of Figure (1) we c m  see that some of the derivatives shown in expressions 
(91) and (92) are zero. For example, changing r3 does not change Av, or Avg. Likewise 
we see that changing the time t 3  does not change 4v1 or Av5. In general we can mi te  

In other words, changing the time or position of the j t h  maneuver only changes the following 
maneuvers: AvI-l, Avj, and AvJ+l. Thus, the only non-zero internal derivatives are 

aAvF-l BAvT dAvT+l 
are ’ are ’ are 

The non-zero internal derivatives can all be determined by closely investigating Lambert’s 
problem. Recall that Lambert’s problem is to find vlf and v;, given rI, t l ,  T F  and t ~ .  
We see that the non-zero internal derivatives can be determined from the derivatives of the 
solution to Lambert’s problem , VI+ and v;, with respect to changes in rI, t l ,  rF and t F .  
These derivatives appear in the literatureI5i7 and they can also be found by the approach 

- _ _ _ _ _  
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Table 4 Time Derivatives of the Solution to Lambert’s Problem 
8 t I  dtF 

Table 5 Position Derivatives of the Solution to Lambert’s Problem 
drI  drF 

used in this paper to determine the derivatives of cost and constraints with respect to the 
independent variables. Table 4 contains a summary of the derivatives of v; and v; with 
respect to changes in the initial and final time t z  and tF respectively. Table 5 contains a 
summary of the derivatives of v; and v; with respect to  changes in the initial and final 
position rI and rF respectively. The left hand column of the tables contain the numerator of 
the derivative definition and the horizontal titles contain the denominator of the derivative 
definition for a particular derivative. So, for example, we see that 

where BF::tI and AtF,t, come from the STM of the trajectory that is the solution to Lam- 
bert’s problem, v; is the velocity immediately after the first impulse, and af is the accel- 
eration immediately after the first impulse. Using the derivatives in Tables 4 and 5, we can 
determine the remaining internal derivatives which are summarized in Table 6. 

I t  is interesting to note that the derivatives dve/8te and vzldte are explicit functions 
of the accelerations a+ -nJ 9;. Fer spacecrzft flying in environments wit,h nonconservative e aLLu - 
forces these terms may be significant. However, when we evaluate Eq. (38), the accelerations 
appear in pairs such as (a: - a;). This term is identically zero when the flight regime 
consists only of conservative forces and so acceleration terms do not come into play unless 
there are forces that are explicit functions of the spacecraft velocity. 

Final Boundary Derivatives 

The final boundary derivatives are defined as derivatives of 4vf with respect to t,, 
From inspection, we see that 

dAVT 
& = O  if j < n - ~  
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Table 6 Interior Derivatives 
Term ate are 

0 0 

Following a simiiar approach as in the last two sections, the final boundary derivatives are 

-- - 0  h i - 1  

-1 

 he quantity vZk is found using 

(97) 

and Gk and ank come from Eq. (8) evaluated at the pre and post maneuver conditions 
for maneuver nk. The derivatives with respect to t,, are summarized in Table 7. This 
completes the derivation of the required derivatives. We now move on to discuss numerical 
issues and implementation. 

Numerical Issues and Implementation 

, 

Subtle issues in the implementation of a numerical optimization approach often dra- 
matically influence the speed of convergence and the quality of the solutions. The method 
presented here has several numerical issues that can be accommodated if they are under- 
stood by the analyst. In this section we address these numerical issues as well as discuss 
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details of the software implementation of the method used to solve the test cases in the next 
section. The first difficulty occurs when a STM is not invertible. The second difficulty is 
an artifact of the problem parameterization and occurs when the times of two maneuvers 
are the same. The third difficulty is when there are small AVs along a trajectory. 

The most obvious numerical difficulty appears in calculating the derivatives of the cost 
and constraints. The equations for the derivatives in the previous section assume that the 
components of the STM are invertible. If the components of the STM are not invertible then 
the derivative cannot be calculated. Sternlo showed three cases in which the components 
of the STM are not invertible for the two-body problem. They are: 

1. The difference between the initial and final times is an integer multiple of the orbit 
period. 

2. The difference between the initial and final true anomalies is given by N T ,  for N = 
0.1,2,3. (Note that case 1 is a subset of case 2 )  

3. The time of flight is a minimum for the given tiiff'creim in true anomaly. 

The first two cases of singularities in the STM cause surprisingly less diffic:iilty than one 
might initially expect. Test cases on the Hohmann transfer, whose solution involves a 
transfer angle of exactly T ,  have shown that the STM is invertible for transfer angles within 
le-4 degrees of the singularity that occurs at the solution. The result is that the method 
finds solutions within le-6 m/s of the known analytic solution. Furthermore, this method 
has been developed to solve real-world problems where perturbations are included in the 
dynamics model. In these cases, the solution rarely occurs exactly at transfer angles (2N + 
1 ) ~ .  Finally, because we are solving a minimum fuel problem, the third STM singularity 
rarely appears. However, it is recommended that the transfer angles are monitored during 
the optimization process. If a singularity occurs, a small, but non-zero maneuver can be 
added to remove it. 

Another subtle singularity arises from the parameterization of the problem. The opti- 
mization rnutine controls the independent variables shown in Eq. (15) for a maintenance 
or reconfiguration sequence and the independent variables shown in Eq. (20) for an ini- 
tialization sequence. Suppose we are optimizing a maneuver sequence that contains two 
spacecraft (rn = 2) and that each spacecraft performs four maneuvers (nl = 72.2 = 4). For 
this scenario t 2 2  and t 3 2 ,  the times of the second and third maneuver of the second space- 
craft respectively, and 1-22 and r 3 2 ,  the location of the second and third maneuvers of the 
second spacecraft respectively, are varied freely by the optimizer. It is possible that during 
the optimization process, that the optimization routine may try the following: 

t 22  = t 3 2  r 2 2  # r 3 2  (102) 

There is no solution to Lambert's problem for the above conditions. Furthermore, as t 2 2  -+ 

t 3 2 ,  A v 2 2  -+ m. There are several ways to handle this difficulty. One is to apply a set of 
constraints such that t i k  - t i - l , k  2 c where c is a constant chosen according to the problem 
being solved. However, if during the optimization process this problem occurs, it is likely 
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that one of the maneuvers is not necessary. The simplest solution is to stop the optimization 
process, remove one of the maneuvers, in this case either the maneuver at time tn or t 3 2 ,  

and restart the optimization process. 

The third numerical difficulty is the singularity that occurs when f s ( A u J k )  = 1 and 
Av3k = 0 and was discussed in previous sections. By defining fs(Av,k) as in Eq. (41) - (43), 
we can remove this singularity- Physically, the form chosen for fs(Av,k) removes small 
x-dues of AvJk from the cost fundion. Care must be taken in defining the constants AVL 
and AVH according to the problem being solved. 

The formulation of the cost function, constraints, and gradients w x s  performed without 
regard to the specific dynamics model chosen. However, in a software implementation, 
we must choose a dynamics model including the reference frame in which to express the 
equations of motion, and the forces and perturbations to include. Ke have chosen to work 
in the Earth Mean 52000 Equatorial system. We have chosen to include accelerations from 
the spherical Earth, J 2 ,  and third body point mass accelerations from the Sun and Moon. 
The resulting dynamics are given by 

where a subscript "1" represents the spacecraft, a subscript "2" represents Earth, a subscript 
--Y represents the sun, a subscript '$4" represents the moon, and r21 is the position of the 
spacecraft with respect to the Earth and so on. The term aJ, is given by 

(104) 

where x ,  y, and z are the inertial components of the spacecraft position vector, and pe and 
&, are the Earth's gravitational parameter and radius respectively. The STM is calculated 
by defining 

x =  [ rT v']' (105) 

then 
x = [ i  T + T I T  

then in first order or state form a;; 
ax 

A = - - -  

The derivatives in Eq. (107), while non-trivial, aze well known and not presented here. 
Finally, the differential equation governing the SThl is given by 

& = A *  (108) 

The differential equations shown in Eqs. (103) and (108) are numerically integrated as a 
coupled system of 42 first-order ordinary differential equations. 
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The remaining issues involved in the software implementation are concerned with opti- 
mizer selection, convergence criteria, scaling, and bookkeeping of the considerable amount 
of data required to evaluate the cost function and its gradient and the constraint func- 
tions and their Jacobian. We have chosen to work in MATLAB and therefore have used 
the fmincon SQP algorithm available in the MATLAB Optimization Toolbox. For speed, 
all numerical integration of the equations of motion and the STMs is performed by using 
MATLAB mea: functions compiled from C code. Likewise, all TPBVPs are solved in mexed 
C functions. The TolX, TolFun, and TolCon convergence tolerances of fmzncon were set to 
le-12 for most problems and we refer the reader to the MATLAB Optimization Toolbox' 
documentation for more information on the definition of these settings. 

The final issue involves bookkeeping. For each cost function evaluation, we require an 
initial guess in order to start the TPBVP solver discussed in a previous section. For the first 
function evaluation, the code uses an initial guess provided by the user. For subsequent cost 
function evaluations, the code uses solutions from previous cost function evaluations as the 
initial guess. This assures that the initial guesses for the TPBVPs evolve with the optimizer 
iterations. There is an STM matrix associated with each segment of each trajectory and 
these STMs are calculated when the TPBVPs are solved. The STMs for each segment are 
saved, and then used in the calculation of the Gradient and Jacobian. Great care must be 
taken to save the STMs in a convenient manner and use them correctly in the equations for 
the Gradient and Jacobian. 

We now move on to discuss several example applications. 

Applications and Examples 

In recent years, numerous distributed spacecraft missions have been proposed in a diverse 
set of flight regimes and employing a wide range of inter-spacecraft separation distances. 
The examples we have chosen demonstrate the applicability of the method to different 
flight regimes and different types of distributed spacecraft missions. In example 1, case 1, 
we choose not to solve for the optimal injection orbit. In example 1, case 2, we do solve 
for the optimal injection orbit. Similarly] in some cases we have chosen to apply the AV 
equalization constraints, and in other cases we have chosen not to apply the constraints. 

The first example is a Highly Elliptic Orbit (HEO) formation of four spacecraft that 
forms an ideal tetrahedron of 100 km at apogee. For the HE0 formation, we apply the 
method to initialize the tetrahedron in the presence of perturbations for three cases: 

1. Minimize J ,  do not vary injection orbit, do not apply A V  equalization constraints. 

2. Minimize J ,  vary the injection orbit, do not apply AV equalization constraints. 

3. Minimize J ,  vary the injection orbit, apply AV equalization constraints. 

The second example is a formation in a large-amplitude Lissajous orbit about the Sun- 
Earth L2 point. The formation is composed of two spacecraft that initially lie on the same 
trajectory. The final configura.tion is a separation of 200 km between the two spacecraft. For 
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t h s  example, vie present an optimal initialization sequence to demonstrate the applicability 
of the method to multi-body flight regimes. 

Example 1: H E 0  Formation 

Recall that example 1 is a HE0 formation of four spacecraft that forms an ideal tetra- 
hedron of 100 km at apogee. The desired final orbit states are found in Table 8. The initial 
orbit, called the injection orbit, is found in column five. The desired hal states for the 
spacecraft are found in columns one through four. The injection orbit was determined by 
back-propagating the desired final states for approximately 24 hours, and a\;era@g the 
states of the four spacecraft. A three maneuver initial guess sequence was then created by 
solving the resulting four lambert problems and adding a small intermediate AV for a total 
of three maneuvers on each of the four trajectories. The AVs for the initial guess found 
using this approach are shown in Table (9). M'e see that the total AI/ for the initial guess 
is 256.63 m/s.  

Table 8 States Defining Desired Orbit for Example 1 
Property S/C 1 7  s/c 2+ s/c 3+ s/c 4+ Injection Orbit$ 
a ( k m )  42095.74 42095.74 42095.74 42095.74 42095.70 

e .8181803 .8181822 .8162243 0.8169300 0.8 173807 
i (deg.) 18.00000 18.00000 18.02006 17.94851 17.99215 
w (deg.) 90:00012 90.09 161 90.04603 90.04597 90.04581 

v (deg.) 178.6873 178.6709 178.6699 178.6733 179.9916 
R (des.)  0.1020429e-3 0.1026448e-3 .1024955e-3 0.1023461e-3 0 

22 Mar 2012 12:00:00.0000 3 23 hlar 2012 11:17:34.2939 

Table 9 AIT's for Initial Guess for Esaniplel, Case One 
Property S/C 1 S/C 2 S/C 3 S / C 4  

A z ; ~  (m/s )  24.78 21.87 33.98 35.01 
Av;! (m/s)  6.97 7.058 5.964 6.357 
Av3 ( m / s )  20.04 22.44 36.87 35.28 

C A v j  (m/s) 51.79 51.37 76.82 76.65 

Total AV = 256.63 m/s 

For example 1: case 1, an optimal maneuver sequence was found for the HE0 forma- 
tion by selecting the independent variables X and the constants C as shown in equations 
ms. (15) and (16). Hence, we treated this as a reconfiguration problem where initially 
the spacecraft were collocated at the s m e  point on the initial orbit. We did not .vary the 
state of the initial orbit, and we did not apply the AV equalization constraints. The AVs 
associa.ted with the optimal solution for case 1 are found in Table 10. We see the total AV 
is 71.476 m/s and maximum accumulated 4 V  for a single spacecraft is about 20 m / s .  This 
is a fuel savings of 185 m/s over the initial guess. 

For case 2, we began with the converged solution to case 1 as the initial guess, but 
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Table 10 Optimal Solution: Example 1, Case 1 
Property S/C 1 S/C 2 S/C 3 S / C 4  

Av, (m/s)  8.864 8.783 5.372 6.593 

AVS ( m / s )  5.797 6.438 8.899 7.572 
A v ~  ( V L / S )  1.475 2.258 3.276 6.33 

C A v j  (m/s)  15.956 17.479 17.5466 20.495 

Total AV = 71.476 mls 

allowed the initial orbit to  be included in the independent variables as opposed to being 
considered a constant. Hence, X and C were defined as shown in equations Eqs. (20) 
and (21). The solution yields a minimum fuel maneuver sequence, and the optimal launch 
injection orbit. The AVs for case 2 are shown in Table 11 and the optimal launch injection 
orbit in Table 12. The total AV for case 2 is 20.79 m/s. We see that varying the injection 
orbit has a dramatic influence on the total AV. There is a 51 m / s  improvement over case 
1 and the maximum accumulated AV for a single spacecraft is about 7.3 m/s. 

Table 11 Optimal Solution: Example 1, Case 2 
Property S/C 1 S/C 2 S/C 3 S / C 4  

Av, (m/s )  0.247 4.187 1.003 4.5e-5 
Av2 (m/s )  0.523 0.593 2.382 7.212 
Av3 ( m / s )  3.836 4.le-5 0.791 3.6e-5 

C A v j  (m/s)  4.606 4.780 4.176 7.212 

Total AV = 20.774 m / s  

Table 12 Example 1, Case 2 Optimal Injection Orbit 
Property Injection Orbit1 
a (W 42091.69 

e 0.8 168908 
i (deg.) 17.999768 
w ( d e d  89.78643 

(deg.) 0.181559 
u (dea.1 180.14348 

t 22 Mar 2012 11:58:35.4160 

For case 3, we choose the same independent variables as example two, however we applied 
the AVequalization constraints shown in Eq. (32). We used the solution from Example 1, 
case 2 as the initial guess for case 3. The AVs for an optimal solution for case 3 are shown 
in Table 13. Notice that the total AVfor each spacecraft is 6.093 m/s. Comparing to case 
2 we see that enforcing the AVequalization constraints resulted in a small penalty of about 
3.34 m/s. We now move on to discuss Example 2. 
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Table 13 Optimal Solution: Example 1, Case 3 
Property S/C 1 S/C 2 S/C 3 S / C 4  

Av, (m/s) 0.789 5.151 1.460 0.002 
A v ~  (m/s) 2.460 1.940 3.254 6.068 
Av3 (m/s) 2.844 0.002 1.379 0.023 

C A v j  (m/s) 6.093 6.093 6.093 6.029 
Total AV = 24.116 m/s 

Example 2: Libration Point Formation 

The second example consists of a two-spacecraft libration point formation problem about 
the Sun-Earth L.2 point. The desired states of the spacecraft after the maneuver sequence, 
and the injection orbit and initial epoch are shown in Table 14. The states are for a large- 
amplit.ude Lissajous orbit. The initial guess maneuver sequence €or Example 2 contains 

Table 14 States Defining Desired Orbit for Example 2 
ProDertv S/C IT s/c 2+ Iniect,ion Orbit$ 

& . I  

x (km) 76863.56215 76915.15497 -70150.29946 
y (km) -407755.1147 -407729.4652 1358773.158 
3 (km) -33798.44889 -33989.96985 983153.4317 
i ( k m / s )  -0.04802618 -0.048026184 -0.10552622 
jl ( k m / s )  1.12799544 1.127995438 -0.00980635 
Z ( k m / s )  0.13812967 0.138129667 -0.05853318 

11-Jan-2004 09:35:33.6099 3 09-Jul-2004 09:35:33.6099 

four maneuvers for each of the two spacecraft. The two internal maneuvers were computed 
by first finding a two-maneuver trajectory and then placing two small maneuvers, spaced 
equally in time, along the original two-maneuver trajectory. The 4 V s  associated with the 
initial guess for Example 2 are found in Table 15. The total 4 V  for the initial guess for 
each spacecraft is about 2.6 mls. 

We chose to treat this problem as a formation maintenance problem and we did not vary 
the initial orbit. Furthermore, due to the fact that the AV of the initial guess is already 
small, we did not apply the AV equalization constraints. 

The AVs for the optimal maneuver sequence for Example 2 are shown in Table 16. 
Comparing the optimal solution to the initial guess we see that the optimal solution is 
about a one order-of-magnitude improvement over the initial guess. Also, while we did not 
enforce the 4 V  equalization constraints, the AVs for the opt(ima1 solution are nearly equal 
at around .lo9 mls. 
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Table 15 AVs for Initial Guess for Test Case Two 
Property S/C 1 S/C 2 

A v ~  (m/s) 0.2272. 0.2272 
A v ~  (m/s) 1.171 1.171 
Avg (m/s)  1.098 1.087 
A v ~  (m/s) 0.1766 0.28 

Avj ( m / s )  2.6728 2.7651 
Total AV = 5.4379 m / s  

Table 16 Optimal Solution: Example 2 

Av, (m/s)  0.05679 0.0568 
Avz (m/ s )  0.04973 0.049 72 
Avs (rnls)  4.058e-005 4.066e-005 
AVS (m/s)  0.00279 ,00275 

C A v j  (m/s)  0.10935 0.10932 
Total AV = 0.21867 m/s 

Property s/c 1 s/c 2 

Conclusions 

Distributed spacecraft and formation flying missions have been proposed for numerous 
flight regimes and for a wide range of interspacecraft separations. It is useful for the mission 
analyst to have at his or her disposal a method that is applicable to as many mission 
scenarios and dynamics regimes as possible to perform optimal maneuver planning. 

In this work we presented a direct approach to find minimum fuel maneuver sequences 
for distributed spacecraft missions. The cost function is defined as the cumulative AV of 
all spacecraft in formation and we proposed a set of optional constraints to equalize the fuel 
expenditure among spacecraft over a particulur maneuver sequence. The method requires 
_ _ _  qnlving a set of IVPs m d  TPBVPs fnr each c m t  functim eva!uatim. Ilo.::evcr, given the 
speed of modern computers the method is not prohibitively slow. Analytic derivatives of 
the cost and constraints were derived to take full advantage of the power of the numerical 
optimization routine. The method was applied to two test problems: a H E 0  formation and 
a libration point formation. Several optimal scenarios were presented. 

Their are several new contributions to the literature contained in this work. We gener- 
alized methods previously developed in Refs [3] - [7], to permit minimum fuel optimization 
for a set of rn spacecraft. We also generalized the method to find the optimal launch ve- 
hicle injection orbit to minimize fuel during the initial spacecraft deployment phase. The 
cost function was reformulated to remove a naturally occurring singularity in the gradi- 
ent, without loss of generality. We also formulated a set of constraints to equalize the 
fuel expenditure among spacecraft. These modifications, together with the work performed 
by previous researchers, provides an optimization technique for minimum fuel distributed 
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spacecraft maneuvers in multiple flight regimes including LEO. HEO, libration and in- 
terplanetary trajectories. Furthermore, the method is not limited to  small interspaceraft 
separations and is applicable to small formations or large constellations. 
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Appendix 1 

In Table 17 we see the three forms that the function f S ( ( n U 3 k )  can assume depending on 
the magnitude of 4 v 3 k .  The constants in the quartic equation are chosen so that f s  and its 
first derivative are continuous for all values of A 2 ’ 3 k .  If we label the different portions of fs 
as Fl,  F2, and F3 as shown in Figure 5, then the conditions to ensure a continuous function 
and its first derivative are 
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F'(AvH)  = 1 

These conditions yield the following system of linear, algebraic equations 

The solution to this system of equations is 

( A v ~  + Av; - 2Av-y)Av; 
AVH(-AVH + A v L ) ~  d = L  

Appendix 2 

In order to calculate all of the required partial derivatives, it is sometimes necessary 
to calculate the inverse of the state transition matrix. Using well known formulas for the 
inverse of a b!ock matrix, and assuming th2t all of the necessary inverses exist, =ne can 
show that 
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Figure 5 Illustration of f,(AV) 

From the abo\-e, we determine that 

B&+, = CJ+LJ - Dl+1,P;-I.JA34,J (118) 

(119) - 
Dtj  ttJ+1 Bg:t~+l - -By:1JA3+1J 

The relations above can be useful in reconciling the various expressions for the partial 
derivatives found in the literature. It should also be noted that for Hamiltonian system, 
the state transition matrix is symplecticg which implies that 

Appendix 3: Notation 

Position vector 
\ielocity vector 
Number of spacecraft in formation 
Kumber of maneuvers along kth trajectory 
State transition matrix 
Upper left 3x3 partition of 
Upper right 3x3 partition of iP 
Lower left 3x3 partition of @ 
Lower right 3x3 partition of 4j 
j t h  impulsive maneuver on kth trajectory 
Magnitude of j t h  maneuver on kth trajectory 
Initial trajectory of kth spacecraft 
Final trajectory of kth spacecraft 
Vector of independent variables 
Vector of constants 
Internal maneuver location index, 2 5 i 5 n k  - 1 
Maneuver time index, 1 L. j 5 nk 
Trajectory index, 1 5 k 5 m 
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